Genetic engineering of the glyoxalase pathway in tobacco leads to enhanced salinity tolerance.
نویسندگان
چکیده
The glyoxalase pathway involving glyoxalase I (gly I) and glyoxalase II (gly II) enzymes is required for glutathione-based detoxification of methylglyoxal. We had earlier indicated the potential of gly I as a probable candidate gene in conferring salinity tolerance. We report here that overexpression of gly I+II together confers improved salinity tolerance, thus offering another effective strategy for manipulating stress tolerance in crop plants. We have overexpressed the gly II gene either alone in untransformed plants or with gly I transgenic background. Both types of these transgenic plants stably expressed the foreign protein, and the enzyme activity was also higher. Compared with nontransformants, several independent gly II transgenic lines showed improved capability for tolerating exposure to high methylglyoxal and NaCl concentration and were able to grow, flower, and set normal viable seeds under continuous salinity stress conditions. Importantly, the double transgenic lines always showed a better response than either of the single gene-transformed lines and WT plants under salinity stress. Ionic measurements revealed higher accumulation of Na+ and K+ in old leaves and negligible accumulation of Na+ in seeds of transgenic lines as compared with the WT plants. Comparison of various growth parameters and seed production demonstrated that there is hardly any yield penalty in the double transgenics under nonstress conditions and that these plants suffered only 5% loss in total productivity when grown in 200 mM NaCl. These findings establish the potential of manipulation of the glyoxalase pathway for increased salinity tolerance without affecting yield in crop plants.
منابع مشابه
Overexpression of the Glyoxalase II Gene Leads to Enhanced Salinity Tolerance in Brassica Juncea
Engineering of salinity tolerance in agronomically important crop plants is required to increase their productivity by enabling them to grow in saline soils, which are otherwise left uncultivated. Since an increase in the enzymes of glyoxalase system has been shown to impart salinity tolerance in the model plant tobacco, we used the glyoxalase II gene for engineering salinity tolerance in an im...
متن کاملTransgenic tobacco overexpressing glyoxalase pathway enzymes grow and set viable seeds in zinc-spiked soils.
We reported earlier that engineering of the glyoxalase pathway (a two-step reaction mediated through glyoxalase I and II enzymes) enhances salinity tolerance. Here we report the extended suitability of this engineering strategy for improved heavy-metal tolerance in transgenic tobacco (Nicotiana tabacum). The glyoxalase transgenics were able to grow, flower, and set normal viable seeds in the pr...
متن کاملCoordinated Actions of Glyoxalase and Antioxidant Defense Systems in Conferring Abiotic Stress Tolerance in Plants
Being sessile organisms, plants are frequently exposed to various environmental stresses that cause several physiological disorders and even death. Oxidative stress is one of the common consequences of abiotic stress in plants, which is caused by excess generation of reactive oxygen species (ROS). Sometimes ROS production exceeds the capacity of antioxidant defense systems, which leads to oxida...
متن کاملAssessing genetic diversity of promising wheat (Triticum aestivum L.) lines using microsatellite markers linked with salinity tolerance
Narrow genetic variability may lead to genetic vulnerability of field crops against biotic and abiotic stresses which can cause yield reduction. In this study a set of 37 wheat microsatellite markers linked with identified QTLs for salinity tolerance were used for the assessment of genetic diversity for salinity in 30 promising lines of hexaploid bread wheat (Triticum aestivum L.). A total of 4...
متن کاملStress-induced changes of methylglyoxal level and glyoxalase I activity in pumpkin seedlings and cDNA cloning of glyoxalase I gene
Abiotic stresses cause extensive losses to agricultural production worldwide. In this study, the effects of various abiotic stresses on the upregulation of methylglyoxal levels and glyoxalase I activities in pumpkin seedlings (Cucurbita maxima Duch.) were investigated. Most of the stresses caused significant increases in methylglyoxal level and glyoxalase I activity, white light causing the hig...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 100 25 شماره
صفحات -
تاریخ انتشار 2003